Concurrent Versions System,
A Method for Independent Cooper ation

Dick Grune
Vrije Universiteit
de Boelelaan 1081

1081 HV Amsterdam

People working together on a set of filesin real-world circumstances may often interfere with
each other. To avoid such interference, the idea of an abstract data type can be used. The
abstract data type introduced here consists of a single repository, containing versions of the
files, together with a (small) number of access routines. Each participant has his own copy of
a set of files as represented by the repository, and uses essentially two access routines, one to
merge into his copy changes made to the repository by others, and one to merge changes in
his copy into the repository. (There are several other access routines, for listing contents,
examining differences, etc.) The abstraction is not perfect, but violations (conflicts) are gen-
erally detected and reported.

The implementation of the abstract data type “repository” starts from version control
primitives that can handle a single file and then coordinates their actions. All access routines
are programmed as UNIX T shell scripts and use the RCS programs as version control primi-
tives. In programming the access routines, many more possibilities had to be taken into
account than was intuitively reasonable. Examples are given.

Index terms. concurrency, version control systems, RCS, multiple file update, user
interface

I. TheProblem

In a medium-sized project, it often happens that a (relatively small) number of people work simultane-
ously on a single set of files, the “program” or the “project”. Often these people have additional tasks, causing
their working speeds to differ greatly. One person may be working a steady ten hours a day on the project, a
second may have barely time to dabble in the project enough to keep current, while a third participant may be
sent off on an urgent temporary assignment just before finishing a modification. 1t would be nice if each partici-
pant could be abstracted from the vicissitudes of the lives of the others.

The system described here provides this abstraction by keeping the “files of the project” in arepository. It
gives each participant his or her own copy of them and offers a number of commands to update the copy, to
commit changes to the repository, etc. It is akin to some distributed file systems with optimistic concurrency
control (see, e.g., Mullender and Tanenbaum([1] or Svobodova[2]), in so far as these are capable of implement-
ing concurrency over agroup of files. Its main novelties are its ease of use, itsrelative simplicity, and the length
of the concurrency time span it supports (effectively forever). It is implemented as a smple set of command
files (“shell scripts’) under UNIX.

1. A Simple Solution

If “the project” consists of one file only, and if we disregard efficiency, the problem can be solved with
only two features: aversion-recording system and a program for merging differences.

Both features are well-known and readily available; nevertheless a short description follows to establish
terminology and to sketch the field.

The version system should accept new versions of the file and be able to (re)produce old versions — on
request, according to name or number. It isimmaterial, except for matters of storage efficiency, whether it does
this by keeping all versions integrally or by using deltas (condensed differences between files). Likewise it is

T UNIX isaRegistered Trademark of AT& T Bell Laboratories.

immaterial, except for run-time efficiency, whether it records the original file and applies positive deltas to pro-
duce newer versions, or records the newest version and applies negative deltas to obtain older versions. Some
operating systems provide such a scheme directly; an example is VM S 3], which keeps entire copies. On other
systems, a software package must be used: UNIX SCCS[4] uses positive deltas and UNIX RCS[5] uses negative
deltas.

When two participants each obtain a copy of version P, and one edits his copy into version Q while the
other edits his copy into R (Figure 1), we shall heed a mechanism to combine these edit actions (mechanically)
into anew version S. This is where the difference merger comes in. We can view the edit actions as operators
A, and A, on P, and write

Q=0.(P), R=0y(P)

This gives us two ways of obtaining S.

S12=01(82(P)), S2=02(D1(P))
If S1,=S,1, optimistic concurrency was successful (Figure 2); if S;,#S,,, it failed (Figure 3).
Sz Sz Sz Sa
L] o0

TS
A S

Figure 1 Figure 2 Figure 3

Experience with our Concurrent Versions System (CV'S) has shown that optimistic-concurrency conflicts
are rare, even if there are long lapses (say, of one month) in the updates. Those that do occur are easily mended;
see the paragraph “ Experience and Availability”.

Implementation of the merge actions is surprisingly simple (at a minimal loss in concurrency). Both As
are constructed as lists of line-block replacement actions (it is the line orientation that partly accounts for the
loss of concurrency). If all of the replacement actions affect different lines, the two lists can simply be merged
while adjusting the line numbers, and the resulting list applied to P to obtain S. If, however, the lists collide
somewhere, we have a concurrency conflict (and itslocation!).

It may be noted that this approach is weaker than the criteria set forth by Kung and Robinson[6] for
optimistic concurrency control, in that we do not record that a line has been read by a user. Indeed one user can
add, on agiven line, acall to afunction F(a, b) with two parameters, while another user changes the defini-
tion of F (and all the calls known to him) to have three parameters. Since the two sets of changes pertain to dif-
ferent lines, such a conflict would go unnoticed by CVS. However:

- the Kung & Robinson criteria can be defeated unwittingly by a user working from alisting,
- subsequent compilation of the “project” should throw up parameter mismatches,
- we have yet to see this happen in practice.

Also note that the Kung & Robinson criteria require all reading actions to be noticed and therefore either impose
severe restrictions on the user or require extensive help from the operating system.

[11. The One-File System in Practice

The repository holds al versions of the file; in our application the versions form a single sequence,
without branches. In principle the repository may be a directory, an archive, a multi-file file or any other suit-
able object; it may even reside on a different machine. Our implementation uses a directory containing one or
more RCS-iles. RCS uses negative deltas, includes a difference merger and is available under UNIX; it
automatically numbers its successive versions.

fVMSisaTrademark of Digital Equipment Corporation.

A call of “create version”
CV repository-name

in an empty user directory, will provide the new user with a personal copy of the file (newest version) Q and
will record (in an auxiliary administration file) the number of the version used, P, as assigned by RCS. The user
may now modify Q as he sees fit.

After awhile the user may want his (possibly modified) file to be brought up to date. To thisend he calls
“update version”

w

which, from the administration file, knows where to find the repository, what file is concerned and from which
version it derives. Now for each newer version in the repository, UV calls the difference merger to move the
user file Q one notch up the version ladder; see Figure 4 in which Q' and Q" are successively more updated ver-
sions of Q.

Q” .

e A N {
V4 / /

.P .P
Figure 4

S

UV aso updates the administration file to reflect the fact that Q" now derives from S If the difference
merger finds any conflicts (i.e., lines modified by the user and by the creator of R or S), these are reported to the
user, to be corrected by hand. This correction may require consultation with the other participants, since at the
bottom of the merge conflict there may well be a misunderstanding among the project members.

When the user is satisfied with his modified file Q" , he can commit it to the repository by calling
CM ' some text giving the reason why’

(where the apostrophes are required by the UNIX shell syntax). Thisis alowed only if the file to be committed
derives from the newest version; conseguently the commit will always succeed, as depicted in Figure 5.

Q" o Q" T

N\ /

S S

R R

/ /

P P
Figure5
The user keeps his copy Q"; the newest version in the repository, T, will be equal to it; again the adminis-
tration file is updated.

We are now back at the original situation after calling CV, i.e., the user has a copy, properly registered, of
the newest version in the repository.

It should be noted that no change made by the user will be reflected in the repository until he calls CM
after which they will all appear simultaneously. (For possible synchronization problems with other participants,
see below.)

IV. The Multi-File System

If restricted to one file only, the above commands would actually be of limited use; they would merely be
packaged calls to RCS. It is only in the application to a—coherent—set of files that CVS finds its usefulness: it
lets the user treat the whole set as a single object.

Extension of the one-file system to many files is conceptually ssmple: for each file, keep an entry in the
administration file. Implementation, however, was far from simple, for several reasons:

- files may be added or removed concurrently;

- we need an optimization to avoid running the difference merger on every single file, even if only a frac-
tion of them have been modified;

- we have to check data integrity, since the user file, the repository file, the administration entry, or any
combination of these may have been logt; thisinterferes with the above;

- several users may attempt to commit their changes simultaneously.

We shall discuss these problems in turn.
A. Adding and removing files

To add a new file to the project, the user creates afile and then calls

AE file-name

Initially this just results in an entry in the administration file, marked “Added”. Only when this version is com-
mitted to the repository is an RCS-file made.

To remove afile from the project, the user removes the file from his own version and then calls

RMfile-name

Again this just results in a “Removed” mark being set in the corresponding entry in the administration file.
Upon the next call of CM the RCSHile will be removed from the repository. (Actualy, to be on the safe side, it
ismoved to a specia part of the repository, the Attic.)

Since the actual adding and removing is delayed, we can alow the user to undo it. More particularly, the
user can resurrect a file that was removed and RM-ed but not yet committed, by calling AE for that file. We
have al the information to bring back exactly the same file that the user has removed.

B. The optimization

For the optimization to be effective, we need a way to check if a file was modified since the time it was
derived from the repository, and we have to do better than to retrieve the original from the repository and do a
compare. Fortunately, UNIX records the modification date (and time) of afile; we register the creation (modifi-
cation) date of each file in the administration file as a time stamp, at the moment it is derived from the reposi-
tory. Rather than just calling the difference merger, we first check the present time stamp of afile Q against the
one recorded in the administration file. If they are equal the file has not been modified by the user, and A; was
the identity operation; Q is thrown away and is replaced by a copy of the newest version. This is considerably
faster than calling the difference merger.

Actually, thisis not precisely good enough: a user might have modified afile and then changed it back to
its original form. This would change the time stamp, but still the file should not be treated as modified, for two
reasons:

- it would be confusing,
- the file could not be committed anyway, since RCS refuses to accept null updates.

This means that if the time stamps differ, an explicit comparison must be done; if the file turns out to be
unmodified after al, the time stamp in the administration file is updated and the file is treated as unmodified. It
should be noted that this involves local time only; time stamps are compared only to other time stamps obtained
on the same machine.

C. Combining the information
For each file F, there are three sources of information:
- the administration entry, for user version number, time stamp and Added/Removed information;
- the RCS-file, for most recent version number and contents; and
- the user file itself, for time stamp and contents.
The entry may be absent, or indicate “Added”, “Removed” or “Normal”; the RCS-file may be absent, or

be the parent or be newer; the user file may be absent, or “Unmodified” or “Modified”. For a more precise
definition of these terms, see Table 1. Together there are 4* 3* 3=36 combinations, ten of which cannot materi-
alize: if there is no time stamp, we cannot distinguish between “Unmodified” and “Modified”, which eliminates
six combinations; likewise, if there is no version number, we cannot distinguish between “Parent” and “Newer”,
which eliminates four more combinations. The “Added” mark requires the user file to be present, the
“Removed” mark requires the user file to be absent; this collapses eight combinations into two error combina
tions. The resulting twenty combinations are listed in Table 2.

Although some of these situations group together for some commands, they do so differently for different
commands. Thisisillustrated in the listings of the actions for AE and UV, given in Tables 3 and 4; similar tables
can be drawn up for CMand RM In programming these commands, it has been tempting to let oneself be guided
by common sense and intuition, but cases kept cropping up in which the command behaved oddly. Only when
the exhaustive tables were drawn up and the programs coded after them, the errors disappeared.

D. Smultaneous commits

Two or more participants could, at roughly the same moment, decide to commit their versions, RCS
guarantees the integrity of single files, but if the project consists of more than one file, mutual exclusion will be
required. To this end, the repository has been protected with a ssmple multi-reader single-writer scheme, using
the presence of temporary directories as locks. It should be noted that this is a very temporary locking, opera
tive only as long as the actual commit goes on. It does, however, entail all the usual problems caused by a sys-
tem crash during a commit.

V. TheUse of the System

The system is normally used as follows. The user treats his files as private property, which in fact they
are. Before leaving, he starts a delayed job, to run at say 5 AM, that does an update-version followed by a call
of make (the UNIX utility for doing dependency-controlled compilation, see Feldman[7]), possibly followed by
some simple tests. Next morning, he will find afreshly hatched and compiled version.

Use by a single person

Although CVS is normally used by a group of people, its use may also carry benefits for a single user.
One is inherent in any version-recording system: the user can retrace his steps. Ancther is, that based on our
information and time stamps, we can easily answer the user’s question: “What did | change since | last commit-
ted a version?’ This gives the user the opportunity to examine his modifications just before the next commit,
and so prevent, e.g., overlooked temporary modifications from being entered into the repository.

Another non-obvious application of CVS for the single user is the use of more than one version (= copy)
by one person. This allows one and the same user to work on different aspects of the project without interfering
with himself. It is useful, e.g., in the case where the user must make and test a quick correction to a part of the
project that is under his responsibility but on which he is not working at the moment. In effect, the user worksin
split-personality mode.

VI. Distributed Use

If aversion of RCS is used that can access files on a remote machine, the repository and the users can all
be on different machines. The existence of local copies makes the system pretty indifferent to network parti-
tionings. A temporarily unavailable repository machine causes no more than a dight inconvenience under nor-
mal operation: updating the local copy does not work and the user may not have the most recent version; this
can be remedied as soon as the network recovers. As explained above, no global timeisinvolved.

VII. Experience and Availability

The system has been in use for amost three years now, to control various projects by various people. It is
used to maintain the source programs of the Amsterdam Compiler Kit[8] and of severa other projects. It has
shown to be able to sustain very long divergence times, as the following experience may illustrate.

One of our students was given a CV'S copy of the C compiler files of the Amsterdam Compiler Kit, to
which he added features for extensive type checking and heuristic logic checking, as part of his master’s thesis.
The student did not use CVS, so no update version command was given during the six months of his thesis pro-
ject. When finally an update version was done, it showed three conflicts in atotal of 92 files, each of which was
solved by hand in less than 10 minutes.

No CV'S conflicts that were not easy to resolve have been brought to the attention of the author. Such dif-
ficult conflicts, though theoretically possible, seem to be very rare in practice.

The system consists of 25 shell-scripts, totalling 43 kbytes, and is available from the author,
(dick@cs.vu.nl or ...'mcvax!vud4!dick) or as archive “cvs’ from USENET mod.sources.

References

1. S. Mullender and A. S. Tanenbaum, “A Distributed File Service Based on Optimistic Concurrency Control”,
in Proceedings of the 10th Symposium on Operating Systems Principles, (Orcas Island, Wash., Dec 1-4). ACM,
New York, 1985, pp 51-62.

2. L. Svobodova, “File Servers for Network-Based Distributed Systems’, ACM Computing Surveys, Vol 16, #4,
pp 353-398, Dec 1984.

3. VAX Technical Summary, Digital Equipment Corporation, Manyard, Massachusetts, 1980.

4. M. J. Rochkind, “The Source Code Control System”, |EEE Transactions on Software Engineering, SE-1, #4,
Dec 1975.

5. W. Tichy, “Design, implementation, evaluation of arevision control system”, in Proceedings of the 6th Inter-
national Conference on Software Engineering (Tokyo, Japan, Sept 13-16). ACM, New Y ork, 1982, pp 58-67.

6. H. T. Kung and J. T. Robinson, “On Optimistic Methods for Concurrency Control”, ACM Transactions on
Database Systems, Val. 6, #2, June 1981, pp 213-226.

7. S. I. Feldman, “Make — A Program for Maintaining Computer Programs’, Software — Practice & Experi-
ence, 9, #4, pp 255-266, April 1979.

8. A. S. Tanenbaum, H. van Staveren, E. G. Keizer and J. W. Stevenson, “A Practical Toolkit for Making Port-
able Compilers’, Communications of the ACM, 26, #9, pp 654-660, Sept 1983.

Definitions of termsin tables2to 4

Entry
- The entry is absent
Added The file was added to the user copy but not yet
committed
Removed The file was removed from the user copy but the
removal has not yet been committed
Normal The file belongs to both the user copy and the
repository
RCSfile
Any The state of the RCSfile isimmaterial
- The RCSfile is absent
Present The RCSfile exists
Parent The version numbers of the RCS file and the user
file are the same
Newer The version number of the RCS file is higher
than that of the user file
User file
- The user file is absent
Present The user file exists
Unmodified The user file time stamp is equa to the entry
time stamp
Modified The user file time stamp differs from the entry

time stamp

Table 1

Possible states

Entry RCSfile User file Explanation

- - - Error: nothing is known about the file

- - Present The file exists, but is unknown to RCS or the
repository

- Present - Thereisan RCSHile only

- Present Present Warning: the CVS entry ismissing

Added Any - Error: the file to be added is missing

Added - Present Thefileisto be added

Added Present Present Conflict: the file to be added has been added
simultaneously and independently by a second
party

Removed - - Warning: the file was removed simultaneously
and independently by two parties

Removed Parent - Thefileisto be removed

Removed Newer - Conflict: the file is to be removed, but was modi-
fied by a second party

Removed Any Present Error: the user file should be removed and is till
there

Normal - - Warning: spurious entry

Norma - Unmodified Thereisno RCS-file

Norma - Modified Thereisno RCSHile

Normal Parent - Warning: the user fileismissing

Normal Parent Unmodified Normal situation, all quiet

Norma Parent Modified Normal situation, the file is modified

Normal Newer - Warning: the user fileismissing

Normal Newer Unmodified The repository is more recent

Normal Newer Modified The copies have diverged

Table 2

Actions of AE (Add Entry)

Entry RCSfile User file Action

- - - Error: nothing is known about the file

- - Present OK: build an entry for the user file

- Present Any Error: the user file was added independently by a
second party

Added Any Any Error: the user file has already been entered

Removed - - Error: CVS cannot resurrect the user file, the
RCS file was removed by a second party

Removed Present - OK: resurrect the user file

Removed Any Present Error: the user file should be removed and is till
there

Normal Any Any Error: the user file already exists

Table 3

Actions of UV (Update Version)

Entry RCSfile User file Action

- - - Error: nothing is known about the file

- - Present Error: the user should use AE to create an entry
for this user file

- Present - OK: check out anew version

- Present Present Conflict: the user should move away this file; it
isin the way

Added Any - Error: the new-born user file has disappeared

Added - Present OK: do nothing

Added Present Present Conflict: a file of the same name has been
created independently by a second user

Removed - - Warning: this file was removed independently by
a second party

Removed Parent - OK: do nothing

Removed Newer - Conflict: this removed file was modified
independently by a second party

Removed Any Present Error: the user file should be removed and is till
there

Normal - - Warning: thisfile is not pertinent

Normal - Unmodified Notice: thisfileisno longer in the repository

Normal - Modified Conflict: this modified file was removed
independently by a second party

Normal Parent - Warning: this file was lost

Normal Parent Unmodified OK: do nothing

Normal Parent Modified OK: (check if modification is genuine)

Normal Newer - Warning: this file was lost

Normal Newer Unmodified OK: check out anew version

Normal Newer Modified OK: mergein anew version

Table 4

